-16x^2+32+2=7

Simple and best practice solution for -16x^2+32+2=7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -16x^2+32+2=7 equation:



-16x^2+32+2=7
We move all terms to the left:
-16x^2+32+2-(7)=0
We add all the numbers together, and all the variables
-16x^2+27=0
a = -16; b = 0; c = +27;
Δ = b2-4ac
Δ = 02-4·(-16)·27
Δ = 1728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1728}=\sqrt{576*3}=\sqrt{576}*\sqrt{3}=24\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{3}}{2*-16}=\frac{0-24\sqrt{3}}{-32} =-\frac{24\sqrt{3}}{-32} =-\frac{3\sqrt{3}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{3}}{2*-16}=\frac{0+24\sqrt{3}}{-32} =\frac{24\sqrt{3}}{-32} =\frac{3\sqrt{3}}{-4} $

See similar equations:

| (4x+1)=60 | | .5-(n-4)=3(n+2) | | a^2+18a-73=0 | | 3=4b | | 12=16y | | (3b-7)+(4b+5)=180 | | 4x-14=7x+25 | | (3x+4)=60 | | 23j=115 | | (3x+4)=600 | | (3(b-7)+(4b+5)=180 | | 30+.15x=36 | | 2b+b=360 | | 4(b+4)=19+4b | | 3.6n+7=1.1n-3 | | 7.56+x=19.6 | | -11+3n+7n=n-2 | | x+2=96 | | 120+(6v)=180 | | 2)x+3x=20 | | √2-x=x-2 | | 7n=-50 | | 2x+6+4x+12=10x-24 | | x*(x+1)+x*(x+1)=30 | | -2z+1-z=-24 | | 103+(7e)=180 | | x+9=18 | | 12x-3=-5 | | 71.68=5.6r | | 4n+17-4n=14 | | 3x-15=2.5x+5 | | 3y/4=0.25 |

Equations solver categories